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Abstract: Phytolith (biogenic opal silica) assemblages in all organs of the palm family are formed by the uptake 
of silicon from the soil through the root system. Characteristic Metroxylon sagu phytoliths were counted to 
evaluate their presence and size distribution in different leaf and leaflet positions at the approaching flowering 
stage. At the sago field in Pangasugan, Leyte, Philippines, the samples of M. sagu were collected from upper (the 
4th leaf from the apex), middle (the 8th), and lower (the 11th or 14th) leaf portion and from upper, middle and 
lower leaflet position of each leaf. Phytolith assemblages in M. sagu leaflets were extracted by a dry combustion 
method with an electric furnace and described based on morphology and ornamentation according to 
International Code for Phytolith Nomenclature 1.0 and 2.0 using a light-transmitting and scanning electron 
microscope. Spheroid echinate phytoliths, which were highly diagnostic with minor exceptions, were observed 
in the leaflets of M. sagu (three palms) in Pangasugan. Incinerated leaflet samples amounted to approximately 
9% of the oven-dry weight of leaflet. The phytoliths were counted under a light-transmitting microscope. The 
mean diameter of phytoliths was 13.2 μm. Phytoliths were divided into five classes by diameter size; <5 (A), 5–
10 (B), 10–15(C), 15–20 (D), and >20 μm (E) accounted for 11.3, 23.4, 23.5, 25.9,and 15.9% of the total 
phytoliths, respectively. The number of conical projections (spines) in the five classes ranged from 8 to 34 with a 
mean value of 24.8. The largest number of spines (more than 30) was found in 15–20 μm (D) and >20μm (E) 
phytoliths. The increasing trend of the mean number of spines was observed in the increasing diameter of 
phytoliths with some exceptions. The phytolith assemblages supplied by M. sagu will contribute to an useful 
indicator of M. sagu growth for vegetation reconstruction and archaeological study.  
Keywords: echinate, Philippines, silicon, spheroid, spine 
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increases the phytolith content of rice plants to 5 to 6% 

(Kondo, 2010; Sun et al., 2019). Si has positive effects 

on the breaking resistance and bending moment of rice 

(Fallah, 2012), resulting in a sufficient supply of Si 

that provides stability for culms and serves to decrease 

the risk of lodging for rice plants. 

Plants can absorb Si with radial and passive 

transport from external solution (Mitani and Ma, 

2005). Si dissolved from rocks and minerals in soil is 

transported to the surface of the rice root by mass flow 

and is absorbed through root cells to vessels by three 

Silicon (Si) is a beneficial element for plants and is 

present in soil solution as Si(OH)4 (Currie and Perry, 

2007; Nawaz et al., 2019). It alleviates the toxic effects 

caused by stresses of heavy metals, salt, and drought 

(Ma, 2004). The vigor of plants is assisted by Si 

(Luyckx et al., 2017). Both monocotyledons and 

dicotyledons produce phytoliths (Kealhofer and 

Piperno, 1998; Huisman et al., 2018). Si deposition 

increases the abrasiveness of plant tissue and reduces 

its palatability and digestibility for herbivores (Massey 

and Hartley, 2009). The uptake of Si significantly 
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is remarkable; Arecaceae phytoliths were larger than 

those of Bromeliaceae. The ornamented globular 

phytolith is considered a reliable indicator of palms. 

Szczepanowska (2018) provided images of rattan 

(Calameae Kunth) phytoliths in parenchyma fibers 

using a scanning electron microscope and the element 

in phytoliths using energy-dispersive X-ray 

spectroscopy (EDX). 

However, there are few reports of phytolith 

formation in M. sagu (Fenwick et al., 2011; Bowdery. 

2014). Fenwick et al. (2011) showed that the 

assemblage-based approach of M. sagu phytoliths 

provided potential value for archaeological analysis. 

Likewise, Bowdery (2014) found higher percentages of 

M. sagu phytoliths at a depth of 0.97 m in the Rano 

Kau (Easter Island, Chile) core sample, which 

corresponded to AD 1634–1672 based on 14C dating, 

than those at other layers. Recently, Baba et al. (2020) 

elucidated M. sagu phytolith assemblages in the 6th 

leaf from the apex in Pangasugan, Leyte, Philippines. 

However, they did not describe the phytolith 

assemblages of different leaves and leaflets. This study 

used the characteristics of M. sagu phytoliths - spheroid 

echinate shape, 13.2 μm of the mean diameter, 26.0 of 

the mean number of conical projections (spines), 84.0 ° 

of the mean terminal angle, and 0.54 μm of the mean 

length of conical projections (spines) under light-

transmitting microscope presented by Baba et al. 

(2020) and Okazaki et al. (2020).  

The objectives of this study were to describe the 

morphological characteristics (spheroid echinate) of 

phytoliths in M.sagu leaflets and to show the size 

distribution, number of spines, and spine length of M. 

sagu phytoliths in leaflets in accordance with the 

International Code for Phytolith Nomenclature 1.0 

(Madella et al., 2005) and 2.0 (Neumann et al., 2019). 

 

Materials and Methods 

Phytoliths in sago palm leaflets 

Three M. sagu (Palms Y, R, and W) were felled for 

leaf sampling; palm heights were 11.9, 11.7, and 11.1 

m, respectively, just before the flowering stage in 

kinds of Si transporters (Lsi1, Lsi2, and Lsi6) (Ma and 

Yamaji, 2006; Mitani et al., 2009). Silicon in the soil 

solution is taken up to the inside of exodermis cells by 

Lsi1. Lsi2 can transport Si from the inside of 

exodermis cells to outside the cells (the apoplast 

pathway). In endodermis cells, Si is again transported 

to the cortex by the working of Lsi1 and Lsi2. Finally, 

Si flows through vessels to aboveground by 

transpiration flow. Lsi6 plays a role in the unloading of 

Si in the xylem parenchyma adjacent to the phloem of 

the leaf blade and sheath (Yamaji et al., 2008).  

Morphometric analysis allows researchers to 

classify the entire palm family (Delhon and Orliac, 

2007). Patterer (2014) described phytoliths of the main 

palm species (Arecaceae) present in the subtropical 

regions of South America. Satakentia and Arenga 

phytoliths were found to be 1.84 and 6.87%, 

respectively, of the total dry weight (Kondo, 2010). 

Arecaceae produces large amounts of phytoliths and 

has globular echinate morphotypes in its tissue 

(Delhon and Orliac, 2007; Kondo, 2010; Benvenuto et 

al., 2015). The features of globular morphology among 

Arecaceae, Bromeliaceae, Cannaceae, Marantaceae, 

Orchidaceae, Strelitziaceae, and Zingiberaceae were 

distinguished. Arecaceae is a large family of abundant 

phytolith producers. The small globular bodies (10–15 

μm in diameter) in the various phytolith morphologies 

are of particular use for diagnostic and identification 

purposes. A continuum of surface ornamentation was 

displayed on these bodies, varying from psilate to 

tuberculate, with echinate nodes being the most 

commonly observed surface feature. Members of 

Palmae produce two types of phytoliths: hat-shaped or 

conical forms with flat bases, and irregular spherical 

forms; both types usually have rough, spinulose 

surfaces (Tomlinson, 1969). Piperno (1988) noted that 

Palmae species were common to abundant producers 

of distinctive spherical phytoliths with echinate to 

tuberculate surface ornamentation. The ornamented 

globular bodies produced in the Arecaceae overlap 

some with those of Bromeliaceae (Tomlinson, 1969; 

Piperno, 1988). The size differential between families 

M. Okazaki et al.
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with distilled water three times. Eight hours after 

shaking, the top 10 cm of supernatant was removed 

from the water in a test tube. The phytolith samples in 

the remaining solution were centrifuged and dried in a 

drying oven at 105 ℃. Matsunami MGK-S embedding 

agent (polystyrene) was used for mounting and 

covered with a cover glass for observation under a 

light-transmitting microscope (LTM) (Meiji Techno 

MT5000) at 100x and 400x magnification in order to 

count the small to large phytoliths, although Albert et 

al. (2009) and Katz et al. (2010) proposed a method of 

solution separation involving a sequential procedure of 

sieving, acid digestion, and sodium polytungstate 

(Na6(H2W12O40)·H2O). The phytolith samples were 

stored individually in small vials. The presence of 

phytoliths was recorded according to the description of 

Pangasugan, Leyte, Philippines (Table 1). Of the three 

palms, Palm W was the most severely damaged by 

Typhoon Yolanda in 2015 (Okazaki et al., 2013). M. 

sagu leaf samples (Fig. 1) of the 4th, 8th, and 11th or 

14th leaf from the apex were collected from the 

experimental sago field of Pangasugan in 2019. Leaf 

samples were divided into three positions: upper, 

middle, and lower. Furthermore, leaflet samples were 

divided into three positions of different leaves: upper, 

middle, and lower and air-dried after washing with 

distilled water (Fig. 2). About 21 g of fresh leaflet 

samples was oven-dried at 105 ℃ and incinerated in 

an electric furnace at 500℃ for 4 hours. Incinerated 

leaflet samples were weighed. Parts of the incinerated 

samples were rinsed in 0.01 mol/L HCl and washed 

Phytolith Assemblages in Sago Palm (Metroxylon sagu Rottb.) Leaflets

Table 1.  Growth factors of three palms in Pangasugan, Leyte, Philippines

Fig. 1.  Metroxylon sagu leaves in Pangasugan, Leyte, Philippines,
in 2019

Fig 1.  Metroxylonsagu leaf inPangasugan, Leyte,  Philippines  
            (2019)

Fig. 2.  Simplified diagram of Metroxylon sagu leaves and leaflets 
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Fig 2.  Simplified diagram of Metroxylon sagu leaves and leaflets 
            1: upper leaf; 2: middle leaf; 3: lower leaf;  
            4: upper leaflet; 5: middle leaflet; 6: lower leaflet
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electron microscope (SEM) (Hitachi Miniscope TM-

1000) was used to confirm the morphological features 

of dried samples, angles, and lengths of spines without 

any special pretreatment. 

 

Results 

1. Phytoliths in different leaf positions of  

    Metroxylon sagu 

Silicon uptake by M. sagu resulted in the formation 

of spheroid echinate phytoliths. The mean incinerated 

leaflet samples amounted 

to 9.0 ± 4.9% of the total 

leaflet dry weight (Table 

2). The phytoliths in the 

leaflet epidermis of M. 

sagu were observed under 

microscope (Figs. 4 to 6). 

With several exceptions, 

they presented 20 to 30 

spines symmetrically 

arranged at the periphery, 

which agreed with the 

observation of Okazaki et 

al. (2020). Phytoliths 

serve as one diagnostic 

feature that distinguishes 

the International Code for Phytolith Nomenclature 1.0 

(Madella et al., 2005) and 2.0 (Neumann et al., 2019): 

3D shape, 2D shape, texture, and ornamentation. The 

maximum diameter from spine (conical projection) tip 

to spine tip (the phytolith’s largest visible dimension) 

and the number of spines were determined. A total of 

20 to 70 phytoliths was counted per sample to quantify 

the relative abundances of morphotypes (Albert et al., 

2009). Around 30 phytoliths were measured to obtain 

the size distribution of 5 classes by diameter size: <5, 

5–10, 10–15, 15–20, and >20 μm. The percentage of 

different sizes of M. sagu phytoliths was calculated as 

a reference from the results of Yong et al. (2010). The 

total numbers of M. sagu leaflet spines were counted 

under LTM (Fig. 3) and multiplied by two. A scanning 

M. Okazaki et al.

Fig. 3.  Spines on the surface of a M. sagu phytolith

Open circles show spines. The total number of spines is calculated
the spines on the front.  

0 10 m

 
Fig 3.  Spines on the surface of an M. sagu phytolith 
           Open circles show spines. The total number of spines  
            is calculated by doubling the spines on the front. 

Table 2.  Dry weight percent of incinerated leaflet samples  
  in different leaves and leaflets of three Metroxylon  
  sagu
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Fig 4.  Metroxylon sagu phytoliths in incinerated  

leaflet samples from Pangasugan, 
Leyte, Philippines in 2019 
YMm: Palm Y, middle leaf, middle leaflet  
RMm: Palm R, middle leaf, middle leaflet 
WMm: Palm W, middle leaf, middle leaflet 
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palms at the genus level 

(Kealhofer and Piperno, 

1998; Prychid et  al . , 

2003; Piperno, 2006). 

In Figs.  4 and 5,  the 

phytoliths in the leaflet 

tissue were distributed in 

rows, and slightly larger 

phytoliths than those 

observed in the field of 

view were located in the 

peripheral part of the 

stomata guard cells. 

Figure 6 shows diagnostic 

globular echinate types 

(Madella et al., 2005; 

Osterrieth et al., 2009) or 

spheroid echinate types 

(Neumann et al., 2019) of 

different sizes. LTM and SEM images of 

phytoliths in Fig. 6 clearly show a spheroid 

echinate morphotype, which corresponds to 

the results of Fenwick et al. (2011) and 

Bowdery (2014).  

The mean maximum diameter of M. sagu 

leaflet phytoliths was 13.2 ± 1.8μm (Table 

3). The distribution of different sizes of M. 

sagu phytoliths in leaflets is shown in Fig. 7, 

indicating 11.3, 23.4, 23.5, 25.9, and 15.9% 

for <5 μm (A), 5–10 μm (B), 10–15 μm (C), 

Phytolith Assemblages in Sago Palm (Metroxylon sagu Rottb.) Leaflets
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Fig 5.  Metroxylon sagu phytoliths in an incinerated  

leaflet sample  
from Pangasugan, Leyte, Philippines in 2019 
RMu: Palm R, middle leaf, upper leaflet 
RMm: Palm R, middle leaf, middle leaflet 
RMl: Palm R, middle leaf, lower leaflet
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Table 3.  Mean maximum diameter, number, angle, and length of spines of Metroxylon sagu  
phytolith assemblage (LTM)
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15–20 μm (D), and >20 μm (E), 

respectively. Upper leaf samples of three 

palms contained (D) + (E) size phytolith 

assemblages as 40 to 50% of the total 

number of phytoliths with some exceptions 

(Fig. 8). Meanwhile, (D) + (E) phytolith 

assemblages of middle and lower leaf 

samples provided 20 to less than 50% with 

large variations (Figs. 9 and 10). Among 

three M. sagu, the percentages of incinerated 

leaflet weight to oven-dried leaflet weight 

are shown in Table 2. The mean incinerated 

leaflet weight was 9.0%, ranging from 7.7 to 

10.7% among the three different palms, 4.9 

M. Okazaki et al.
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Fig. 8.  Percentage of different sizes of phytoliths in the upper leaf 
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WUl: Palm W upper leaf lower leaflet

Fig 7.  Different size distributions of phytoliths in M. sagu leaflets 
from Pangasugan, Leyte, Philippines (three palms)  
Leaflet samples taken from the upper, middle, and lower 
positions of the upper (4th), middle (8th), and lower (11th 
and 14th) leaves 
Figures show %. 

Fig 8.   Percentage of different sizes of phytoliths in the upper leaf 
YUu: Palm Y, upper leaf, upper leaflet; YUm: Palm Y, upper leaf, middle leaflet; 
YUl: Palm Y, upper leaf, lower leaflet; RUu: Palm R, upper leaf, upper leaflet; 
RUm: Palm R, upper leaf, middle leaflet; RUl: Palm R, upper leaf, lower leaflet; 
WUu: Palm W, upper leaf, upper leaflet; WUm: Palm W, upper leaf, middle leaflet; 
WUl: Palm W, upper leaf, lower leaflet

Fig. 9.  Percentage of different sizes of phytoliths in the middle leaf 
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Fig 9.  Percentage of different sizes of phytoliths in the middle leaf 
YMu: Palm Y, middle leaf, upper leaflet; YMm: Palm Y, middle leaf, middle leaflet; 
YMl: Palm Y, middle leaf, lower leaflet; RMu: Palm R, middle leaf, upper leaflet; 
RMm: Palm R, middle leaf, middle leaflet; RMl: Palm R, middle leaf, lower leaflet; 
WMu: Palm W, middle leaf, upper leaflet; WMm: Palm W, middle leaf, middle leaflet; 
WMl: Palm W, middle leaf, lower leaflet 
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the case of middle leaflet samples, the (D) + (E) 

phytolith assemblages revealed 40 to 50% of the total 

phytolith assemblages, decreasing in order of upper, 

middle, and lower leaves except for Palm R (Fig. 12). 

On the other hand, lower leaflet samples ranged from 

30 to 50% with large fluctuations (Fig. 13). The 

phytolith assemblages in M. sagu leaves were not 

formed uniformly. The mean oven-dried weight 

percentage of phytoliths varied from 7.7 to 10.7% for 

different leaflet positions (Table 2).  

 

to 11.7% among different leaf positions, and 7.7 to 

10.7% among different leaflet positions. The lower 

leaf position provided the lowest percentage of 

phytolith content in M. sagu. The accumulation of 

silicon actively proceeds in the early growth stage, 

and phytoliths may gradually grow larger. 

 

2. Phytoliths in different leaflet positions of  

    Metroxylon sagu 

The (D) + (E) phytolith assemblages of upper 

leaflet samples ranged from 20 to 50% (Fig. 11). In 

Phytolith Assemblages in Sago Palm (Metroxylon sagu Rottb.) Leaflets

Fig. 10.  Percentage of di erent sizes of phytoliths in the lower leaf 
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Fig 10.  Percentage of different sizes of phytoliths in the lower leaf 
             YLu: Palm Y, lower leaf, upper leaflet; YLm: Palm Y, lower leaf, middle leaflet; 
              YLl: Palm Y, lower leaf, lower leaflet; RLu: Palm R, lower leaf, upper leaflet; 
              RLm: Palm R, lower leaf, middle leaflet; RLl: Palm R, lower leaf, lower leaflet; 
              WLu: Palm, lower leaf, upper leaflet; WLm: Palm W, lower leaf, middle leaflet; 
             WLl: Palm W, lower leaf, lower leaflet 

Fig. 11.  Percentage of di erent sizes of phytoliths in the upper lea et 
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Fig 11.   Percentage of different sizes of phytoliths in the upper leaflet 
               YUu: Palm Y, upper leaf, upper leaflet; YMu: Palm Y, middle leaf, upper leaflet; 
               YLu: Palm Y, lower leaf, upper leaflet; RUu: Palm R, upper leaf, upper leaflet; 
               RMu: Palm R, middle leaf, upper leaflet; RLu: Palm R, lower leaf, upper leaflet; 
               WUu: Palm, upper leaf, upper leaflet; WMu: Palm W, middle leaf, upper leaflet; 
               WLu: Palm W, lower leaf, upper leaflet 
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3. Mean maximum diameter, number, angle, and  

    length of spines on Metroxylon sagu phytoliths 

The mean maximum diameter of phytoliths is 

13.2 ±1.8 μm (Table 3), which is slightly smaller than 

that reported by Fenwick et al. (2011), who noted the 

maximum diameter of 14.1 μm for 50 phytoliths of a 

M. sagu reference specimen. The number of spines on 

M. sagu phytolith (Palm Y) varied from 8 to 34, with 

a mean value of 24.8± 3.7 (Figs. 14 and 15). The 15–

20μm (D) and >20 μm (E) phytolith assemblages 

have more spines than the <5 (A) and 5–10μm (B) 

M. Okazaki et al.

Fig. 12.  Percentage of different sizes of phytoliths in the middle leaflet 
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RMm: Palm R, middle leaf, middle leaflet; RLm: Palm R, lower leaf, middle leaflet;
WUm: Palm , upper leaf, middle leaflet; WMm: Palm W, middle leaf, middle leaflet;
WLm: Palm W, lower leaf, middle leaflet 

Fig 12.   Percentage of different sizes of phytoliths in the middle leaflet 
YUm: Palm Y, upper leaf, middle leaflet; YMm: Palm Y, middle leaf, middle leaflet; 
YLm: Palm Y, lower leaf, middle leaflet; RUm: Palm R, upper leaf, middle leaflet; 
RMm: Palm R, middle leaf, middle leaflet; RLm: Palm R, lower leaf, middle leaflet; 
WUm: Palm, upper leaf, middle leaflet; WMm: Palm W, middle leaf, middle leaflet; 
WLm: Palm W, lower leaf, middle leaflet 

Fig. 13.  Percentage of different sizes of phytoliths in the lower leaflet 
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Fig 13.   Percentage of different sizes of phytoliths in the lower leaflet 
YUl: Palm Y, upper leaf, lower leaflet; YMl: Palm Y, middle leaf, lower leaflet; 
YLl: Palm Y, lower leaf, lower leaflet; RUl: Palm R, upper leaf, lower leaflet; 
RMl: Palm R, middle leaf, lower leaflet; RLl: Palm R, lower leaf, lower leaflet; 
WUl: Palm, upper leaf, lower leaflet; WMl: Palm W, middle leaf, lower leaflet; 
WLl: Palm W, lower leaf, lower leaflet

ones. The angle and length of spines were 87.1 ± 

10.7° and 1.1 ± 0.4 μm, respectively, which showed 

the intermediate values between the TLM and SEM 

measurements of Okazaki et al. (2020).  

 

Discussion 

1. Phytolith sizes in Metroxylon sagu 

The Si content in the soil varied from 53.5 to 

86.8% (mean: 70.6%) as SiO2 (Bowen, 1979). 

Generally, the Si concentration in a soil solution 

ranges from 0.1 to 0.6 mmol/L (Epstein, 1994). Si 
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Mercader et al., 2009; Kondo, 2010; Morcote-Rios et 

al., 2016). M. sagu is also capable of taking up Si as 

silicic acid in pH ranges up to 9.8, finally forming 

phytoliths in leaves, petioles, and seeds. Fenwick et 

al. (2011) reported that M. sagu phytoliths were more 

clearly distinguishable than those of Arecacatechu, 

Cocos nucifera, and Calamusaruensis, in order to 

accumulation has been found to a great extent, but not 

exclusively, in monocotyledonous plants (Currie and 

Perry, 2007). Plants can accumulate, store, and 

process Si to create mesoporous silica nanoparticles 

(Sun et al., 2014) and phytoliths (Huisman et al., 

2018). Palms form characteristic phytoliths (Kondo, 

1977; Kondo and Sase, 1986; Barboni et al., 2007; 
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Fig 14.  Mean number of spines on the surface of phytoliths with different 
positions of the leaf (Palm Y) in Pangasugan, Leyte, Philippines 
The bar shows the standard deviation. 
Y: Palm Y; U: upper leaf; M: middle leaf; L: lower leaf; 
u: upper leaflet; m: middle leaflet; l: lower leaflet
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3. Relationship between phytoliths and the breaking 

    resistance/bending moment in Metroxylon sagu 

Silicified cells in rice provide the much-needed 

strength to resist culm breaking (Dorairaj and Ismail, 

2017). Fallah (2012) showed that the breaking 

resistance of rice plants increased with increasing Si 

content. Hossain and Choudhury (1975) also revealed 

that added silicon under hydroponic culture 

significantly increased the rigidity of rice stalks. 

Okazaki et al. (2013) reported the breaking resistance 

of M. sagu leaflets. However, there has not yet been a 

report on the relationship between phytolith content in 

cells of M. sagu and breaking resistance. The strong 

breaking resistance of M. sagu might be dependent on 

the array of phytoliths.  

 

4. Metroxylon sagu phytoliths for past vegetation  

    reconstruction 

Plants accumulate Si up to 0.1 to 10% on a dry-

weight base as biogenic silica phytoliths and provide 

phytolith assemblage to soil (Currie and Perry, 2007). 

Morcote-Rios et al. (2016) used phytoliths as a tool for 

archaeobotany, palaeobotany, and palaeoecology, 

reconstructing ancient floras and landscapes and 

interpreting events in plant evolution and documenting 

plant use by ancient peoples. Huisman et al. (2018) 

also concluded that the analysis of phytoliths could 

track local-scale vegetation dynamics, whereas pollen, 

which was commonly used in palaeoecological 

reconstructions, reflected regional-scale vegetation 

change. Lu and Liu (2005) reveled phytolith 

assemblages as indicators of coastal environmental 

changes and hurricane overwash deposition.  

Silicon uptake by M. sagu resulted in the 

accumulation and formation of phytoliths in leaves, 

roots, and seeds. Bowdery (2014) reported the 

spherical echinate (globular echinate: International 

Code for Phytolith Nomenclature) form of phytolith in 

M. sagu to compare and classify the vegetation on the 

remote southern oceanic island of Rapa Nui (Easter 

Island) and, based on 14C dating, concluded that M. 

sagu was present from AD 1425 to 1634 on Easter 

have a large mean diameter of 14.09 μm, a strong 

tendency to be spherical (93.6% of the assemblage), 

and a weak tendency toward having right-angled 

spines (58.8% of the assemblage). However, the 

results with respect to diameter in this study were 

smaller than those of Fenwick et al. (2011) because of 

different portions of leaves and leaflets and different 

extraction methods used.  

 

2. Description of Metroxylon sagu phytoliths for  

    further study 

The morphometrical analysis of palm phytoliths 

shows important variations of size and shape 

parameters from one species to another and from one 

organ to another (Delhon and Orliac, 2007). The 

International Working Group on Phytolith 

Nomenclature (IWGPN) developed a description of 

phytoliths because standardizing and harmonizing the 

names and descriptions of phytoliths would improve 

communication between researchers and facilitate the 

comparison of phytolith types and analyses (Madella 

et al., 2005). The International Code for Phytolith 

Nomenclature 1.0 presented by Madella et al. (2005) 

and the International Code for Phytolith Nomenclature 

2.0 (Neumann et al., 2019) are appropriately accepted 

worldwide. The characteristic information of 

phytoliths should be supplied in the order of shape, 

texture/ornamentation, symmetric features, 

morphometric data, illustrations, and anatomical 

origin. Palms produce two types of diagnostic 

phytoliths. One type is a globular (spheroid) echinate 

morph. The other type is a hemispherical or conical 

hat-shaped rimmed morph, whose distribution is 

restricted to Caryota, Orania, and Arenga. M. sagu 

phytoliths are composed of globular or ellipsoid 

morphs with a mean diameter of 14.086 μm, and they 

exhibit regular echinate to nodulose surface 

decorations (Fenwick et al., 2011). Almost all M. sagu 

phytoliths are spheroid echinates, which are diagnostic 

and can be definitively distinguished from other 

Arecaceae phytoliths.  
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Recently, multiple studies have revealed that the 

occluded carbon in phytoliths may play a role in 

atmospheric carbon dioxide sequestration and climate 

change mitigation (Parr et al., 2010; Song, et al., 

2014; Zuo et al., 2014). However, the fluxes of carbon 

in phytoliths from vegetation to soil and the residence 

time of carbon in phytoliths in soil are not clear 

(Alexandre et al., 2015). We hope that we are able to 

discover when Leyte Island started to cultivate M. 

sagu and expanded to the east and west coastal sides 

of Leyte and why the east Leyte areas still have M. 

sagu and the west coastal side of Leyte has lost M. 

sagu in the present time.  

 

5. Contribution of Metroxylon sagu phytoliths to 

archaeological research 

Phytoliths are used in archaeology to study ancient 

plant remains and can provide insight into ancient 

diet, non-food uses of plants, the spatial 

arrangements of plant use and discard across 

settlements, agricultural practices, and the seasonality 

of pre-agrarian site occupations (Ryan, 2014). 

Taxonomically identifiable phytoliths are produced 

by many plants. Diagnostic spheroid echinate forms 

can be distinguished (Madella et al., 2005; Morcote-

Rios et al., 2016; Huisman et al., 2018; Neumann et 

al., 2019; Yin et al., 2014). M. sagu phytolith 

assemblages from soil layers in Southeast Asia and 

South Pacific Islands and radiocarbon dating provide 

the distribution ages when transported from the 

center of sago growing areas, as well as its growing 

and environmental conditions. 

 

Conclusion 

M. sagu can take up and accumulate silicon to form 

phytolith (biogenic opal silica) assemblage, which 

amounted to 9.0% of dry leaflet weight. The phytoliths 

of M. sagu are spheroid echinate forms, indicating a 

characteristic feature of the palm family. The 

formation of phytoliths might be determined by 

genetics and, accidentally, by the silicon concentration 

in the xylem and phloem fluid. The mean diameter of 

Island in the southeast Pacific Ocean. This makes M. 

sagu a relative newcomer, as compared to Metroxylon 

vitiense.  

The Si-stable isotope composition of phytoliths was 

a good tool for elucidating paleoenvironmental 

information. During the uptake and conversion of 

silicic acid into particulate hydrous silica, the lighter 
28Si is preferentially incorporated into the silica over 

the heavier 29Si and 30Si (Leng et al., 2009), resulting 

in phytoliths with lighter specific density than those of 

quartz and opal. The element composition of rice 

phytoliths was determined by Li et al. (2014). 

Phytoliths have carbon of 1 to 5 wt% (Jones and 

Beavers, 1963), which was occluded within the 

micrometric internal cavities (Alexandre et al., 2015). 

The 13C/12C (δ13C) ratios of carbon occluded in 

phytoliths express the paleoclimatic condition and 

vegetation (Kelly et al., 1991). Alexandre et al. (2015) 

showed the phytolith structure and occluded the 

carbon location using 3-D X-ray microscopy and 

nanoscale secondary ion mass spectrometry 

(NanoSIMS), concluding that two groups of organic 

carbon were presented in the cavities of phytoliths; 

one was susceptible to rapid oxidation, and the other 

was continuously distributed in and protected by the 

silica structure.   

Phytolith study is a common tool used by many 

researchers to document vegetation changes and 

disturbance patterns related to human settlement and 

plant exploitation (Horrocks and Wozniak, 2008; 

Benvenuto et al., 2015), accompanied by phytolith 14C 

dating (Piperno and Stothert, 2003). Wilding (1967) 

and Wilding et al. (1967) showed that occluded 

carbon was a suitable substrate for 14C dating, 

although the 14C age of phytolith-occluded carbon 

increased directly with the combustion temperature 

(up to 1100°C), resulting in age overestimations of 

hundreds of years (Yin et al., 2014). Piperno and 

Stothert (2003) reported that Cucurbita (squash and 

gourd) phytolith carbon in southwest Ecuador was 

identified as dating to 10,130 to 9320 14C years ago 

(about 12,000 to 10,000 calendar years ago). 

Phytolith Assemblages in Sago Palm (Metroxylon sagu Rottb.) Leaflets
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trees of Easter Island: New radiocarbon and 

phytolith data. Conference: VII International 

Conference of Easter Island and the Pacific, 97-110, 

Gotland University Press 

Dorairaj, D. and M. R. Ismail 2017 Distribution of 

silicified microstructures, regulation of cinnamyl 

alcohol dehydrogenase and lodging resistance in 

silicon and paclobutrazol mediated Oryza sativa. 

Frontiers in Physiology 8: 1-16 

doi: 10.3389/fphs.2017.00491 

Epstein, E. 1994 The anomaly of silicon in plant 

biology. Proceedings of the National Academy of 

Sciences of the United States of America 91: 11-17 

Fallah A. 2012 Silicon effect on lodging parameters of 

rice plants under hydroponic culture. International 

Journal of AgriScience 2: 630-634 

Fenwick, R. S. H., J. Carol, J. Lentfer and M. I. 

Weisler 2011 Palm reading: a pilot study to 

discriminate phytoliths of four Arecaceae (Palmae) 

Taxa. Journal of Archaeological Science 38: 2190-

2199 

Horrocks, M. and J. A. Wozniak 2008 Plant 

microfossil analysis reveals disturbed forest and a 

mixed-crop, dryland production system at TeNiu, 

Easter Island. Journal of Archaelogical Science 35: 

126-142 

Hossain, M. I. M. M. and F. A. Choudhury 1975 The 

effect of silicon on lodging of rice in presence of 

added nitrogen. Plant and Soil 43: 691-695 

Huisman, S. N., M. F. Raczka and N. H. McMichael 

2018 Palm phytoliths of  mid-elevation Andean 

forests. Frontiers in Ecology and Evolution 6: 1-7   

doi: 10.3389/fevo.2018.00193 

Jones, R. L. and A. H. Beavers 1963 Some 

mineralogical and chemical properties of plant opal. 

Soil Science 96: 375-379 

Katz, O., D. Cabanes, S. Weiner, A. M. Maeir, E. 

Boaretto and R. Shahack-Gross 2010 Rapid phytolith 

extraction for analysis of phytolith concentrations 

and assemblages during an excavation: an application 

at Tell es-Safi/Gath, Israel. Journal of Archaeological 

Science 37: 1557–1563 

M. sagu phytoliths was 13.2±1.8 μm. From this result, 

it is concluded that M. sagu phytoliths have sufficient 

qualifications for vegetation reconstruction and are a 

stable archaeological indicator.  
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